Multithreading

An Operating System Analysis

Author: Kevin Haghighat

Date: December 1% 2008

Multithreading
Kevin Haghighat December 1* 2008

1. OVERVIEW

Threads are an inherit part of software products as a fundamental unit of CPU utilization as a
basic building block of multithreaded systems. The use of threads has evolved over the years
from each program consisting of a single thread as the path of execution of it. The notion of
multithreading is the expansion of the original application thread to multiple threads running in
parallel handling multiple events and performing multiple tasks concurrently. Today's modern
operating systems foster the ability of multiple threads controlled by a single process all within
the same address space.

Multithreading brings a higher level of responsiveness to the user as a thread can run while
other threads are on hold awaiting instructions. As all threads are contained within a parent
process, they share the resourses and memory allocated to the process working within the
same address space making it less costly to generate multiple threads vs. Processes. These
benefits increase even further when executed on a multiprocessor architechture as multiple
threads can run in parallel across multiple processors as only one process may execute on one
processor.

Threads divide into two types: user-level threads — visible to developers but unknown to the
kernel, and kernel-level threads — managed by the operating system’s kernel. Three models
identify the relationships between user-level and kernel-level threads: one-by-one, many-to-
one, and many-to-many.

This report explores various notions related to systems with multithreading capability, including
POSIX, Win32, and Java thread libraries.

Challenges associated to multithreaded program development explored in this report are those
of thread cancellation, singnal handling, thread-specific data, and symantics of necessary
system calls.

Page 2 of 10

Multithreading

Kevin Haghighat December 1* 2008
TABLE OF CONTENTS

1. OVERVIEWciiiiiecieiieiiteereecreerentesetastasseessassesssassessssssassasssnssnssssssassssssassassssssnssasessssassssssnssasssnssnsssnssassnnes 2
2. INTRODUCTION.....ouvesreereeesnessssasssssssssssssssssssssssassssssssssssssssssssssssssssssssssssssesssssssasssssssssnessasssssssssessassssans 4
3. IVIODELS. ... ieeitieiieniiencttnnereesernectsnsstassssessssnsessssssnssssssssasssssssssssesassssnsssassssassssnssssnsssnssssnsssassssassssnsesansssnnsss 5
4, LIBRARIEScoieiiiiiiiieiieiieieieettntesetestessssstassasssnssassssssassesssassasssnssnssssssassassssssassasssnssssssnssassasssnssasssnssnnenns 6
5. CHALLENGESouvvvuneescessesssnesssssssssssssssssssssssssssssasssssssssssssssssssssssssssasssssssssssssassssasssssessssssasssssssssessassssans 7
6. CONCLUSIONiiiuiiiimneiiienssiiesssstiessssstsssssssessssstesssssssssssssssssssssssssssssssssssessssssessssssasssssssssssssssssssssansssssans 9
7. ACKNOWLEDGEMENT :cciteiieiieitniieirettncescrstsessssstassssssnsssssssssessssssassasssnssassssssassssssassasssnssasssnssnsssnssassanes 9
8. BIBLIOGRAPHYceieiiiiitereiteetterretteerentescrastassssssassesssnssessssssassasssassasssnssnssssssassasssnssnssssssassnsssassasssnssnnssnsss 10

Page 3 of 10

Multithreading
Kevin Haghighat December 1* 2008

2. INTRODUCTION

Extensively simplified, a thread is the path that a process or application takes during its
execution. Today’s operating systems facilitate a multithread environment. This report will
explore and discuss various concepts and issues associated with threads and multithreaded
operating systems. It will discuss the root three models, followed by a few thread libraries,
explore potential issues, application programming interfaces (APls), followed by some examples
of multithreaded operating systems and their thread support mechanism.

Motivation

Traditionally, programs are single-path execution, hence a single thread. This practice would
have made the production of today's software production impossible as the need of speed
required programs to perform multiple tasks and events at the same time. With traditional
turn-by-turn game, such as tic-tac-toe or chess, the traditional approach works fine, however
with new age multitasking programs where multiple events need to run in parallel, the
traditional approach proves useless.

Benefits

Responsiveness: Multithreading allows a process to keep running even if some threads within
the process are stalled, working on a lengthy task, or awaiting user interaction. Using a digital
alarm clock as an example of a process, the thread of keeping track of time, continues while an
alarm is sounding while another awaits it's time to activate.

Cost Effective: Memory and resource allocation to process creation remains costly where as
threads share the resources allocated to the process they reside in making it less costly to make
threads or move them from on process to another.

Resource Distribution: The inherit property of sharing memory and resources of the parent
process fosters the ability of having multiple treads occupying the same address space.

Cross-Processor Distribution: The benefits of multithreading are multiplied as the number of
available processors increase opposite to single threading where only one processor is used. In
a multiprocessor architecture, running of threads can distribute across multiple processors in
parallel thereby increasing efficiency.

Page 4 of 10

Multithreading
Kevin Haghighat December 1* 2008

3. MODELS

Threads divide into two types, user threads and kernel threads. User threads are user-level
threads handled independent from and above the kernel and thereby managed without any
kernel support. On the other hand, the operating system directly manages the kernel threads.
Nevertheless, there must be a form of relationship between user-level and kernel-level threads.
There exist three established multithreading models classifying these relationships as One-to-

One, Many-to-One, and Many-to-Many.

; ; g ; «—userthread [user-level thread to a single kernel-level thread. This
type of relationship facilitates the running of multiple
threads in parallel. However, this benefit comes with

I I its own drawback such that generation of every new

O @ user thread must include the creation of a
corresponding kernel thread causing an overhead,
Figure 3.1: One-to-One Model which can hinder the performance of the parent

process. Windows series and Linux operating systems
try to tackle this problem by limiting the growth of the thread count.

The one-to-one model (Figure 3.1) associates a single

<«—kernel thread

The many-to-one model (Figure 3.2) associates all user-
level threads to a single kernel-level thread. This type of
relationship facilitates an effective context-switching
environment, easily implementable even on simple
kernels with no thread support. The down side is that
since there is only one kernel-level thread scheduled at
any given time, this model cannot take advantage of the (k) = kernel thread

hardware acceleration offered by multi-threaded Figure 3.2: Many-to-One Model
processors or multi-processor systems.

The many-to-many model (Figure 3.3) is a compromise
between the last two models. In this model, a number
of user-level threads are associated to an equal or
smaller number of kernel-level threads. The
requirement of changing code in both kernel and user
spaces presents a level of complexity not present in the
OIORO . ol

previous models. Similar to the many-to-one model,
Figure 3.3: Many-to-Many Model this model presents an effective context-switching

environment as it keep away from system calls. The
heightened complexity presents the potential for priority inversion and suboptimal scheduling
with little coordination between the user and kernel schedulers.

¢ -—— user threac

Page 5 of 10

Multithreading
Kevin Haghighat December 1* 2008

4. LIBRARIES

Thread libraries provide the means of thread generations and management as APIs in the
development of multithreaded applications. The implimentation of such libraries are
performed via two principal approaches: user and kernel levels.

In the user level approach, all the actual code and data structures are held within the user
space such that invoking a library method will result in a call to a local method within the user
space rather than a system call.

In the kernel level approach, the actual code and data structures are held within the kernel
space such that invoking a library method results in a system call to the kernel since kernel level
libraries are implemented by the operating system itself.

The main thread libraries used today are POSIX Pthreads, Win32 threads and Java threads.

Pthreads — POSIX Pthreads are commonly used in Linux systems. Programmers create and
manage Pthreads in both user and kernel levels.

Win32 Threads — Implemented by Windows NT operating system and above, they foster
high-performance multhithreading. This type of thread belongs to the kernel level.

Java Threads - In Java, thread creation and management is done within the program in 2
forms:

1) Extending a class where a child class inherits methods and variables from a single
parent class as the most common form of creating Java threads.

2) Interfaces allow programmers to create an abstraction of future implementation of
classes. This abstraction sets the stage while implemented interface classes perform
the actual tasks while following the same sets of rules enforced by the interface.

Page 6 of 10

Multithreading
Kevin Haghighat December 1* 2008

5. CHALLENGES

Just as with any new programming intervention, when using the multithreading consept, one
must keep in mind the pottential chanllenges it presents. Some of such challenges are outlined
in this section.

System Calls — One of the issues to keep in mind is how a system call deals with threads
contained in a process that is getting duplicated. Do the threads also get duplicated or
does the duplicated process only posses a single thread? Some Unix systems provide
the means of both methods of duplication.

Cancellations — There are times when we may want to terminate a thread before it completes
its purpose. This type of termination is referred to as thread cancellation. Imagine a
chess game, where multiple moves are evaluated via different threads in order to find
the shortest path of victory based on possible future moves. In such scenario, since all
threads are running concurrently, as soon as one thread has found a path of victory, the
rest of the threads can be cancelled since the found path would be the shortest path to
a checkmate. When cancelling a “target” thread, we can take on of two approaches.
One is asynchronous cancellation, where one thread terminates another that could lead
to orphan resources since the target thread did not have a chance to free them. And
the other, deferred cancellation, where each thread keeps checking if it should
terminate and if so, do so in an orderly fashion freeing system resources used by the
terminating thread.

Signal Handling — Unix systems use signals to keep track of events which must follow the same
path of excecution as depicted in Figure 5.1, regardless of their type being synchronous
or asynchronous.

N
¢ An event occures.

e Signal is created.

e Deliver new signal to a Process.

e Signal recieved.

e Handle Signal.)

Figure 5.1: Path of an event execution.

Page 7 of 10

Multithreading
Kevin Haghighat December 1* 2008

An “illegal memory access” or “devide by 0” actions produce synchronous signals sent to
the causing operation’s process. Asynchronous signals are those recieved as the result
of an external event such as a keyboard commands like <ALT><F4> terminating a
process, which are typically sent to another process.

Thread Pools — Eventhough creation of threads is more conservative than creating processes,
unlimited threads can use up all the resources of a system. One way to keep this
problem in check is the user of thread pools. The idea is to have a bunch of threads
made upon the start of a process and hold them in a “pool”, where they await task
assignment. Once a request is recieved, it is passed on to an available thread in the
pool. Upon completion of the task, the thread then returns to the pool awaiting its next
task. If the pool is empty, the system holds the requests until an available thread
returned to the pool. This method limits the number of threads in a system to a
managable size, most beneficial when the system does not posses enough resources to
handle a high number of threads. In return, the performance of the system increases as
thread creation is ofthen slower than reuse of an existing one.

Thread-Specific Data — The sharing of resources of the parent process does benefit
multithreading programs, but in cases where a thread may need to hold it’s on copy of
some data, called thread-specified data, it could be a downfall as well. The 3 main
thread libraries discussed in this paper do provide support for such thread-specific
handling which are often used as unique identifiers in transaction processing systems.

Page 8 of 10

Multithreading
Kevin Haghighat December 1* 2008

6. CONCLUSION

With multithreading having become an integral aspect of computing today, developers can
produce multithreaded programs offering a wide variety of features and functionalities in a
high performance environment while not over utilising system resources. Developers need to
pay close attention to the potential challenges associated to the use of threads as they could
greatly hinder their development progress.

| feel that Java threads merit special attention as Sun’s Java development’s cross platform
methodology has heightened its place amongst the top programming languages.

7. ACKNOWLEDGEMENT:

I would like to extend my thanks to Academic Institutes whom offered access to publications on
this topic. My wife for her support and understanding throughout the masters program. |
would also like to offer my thanks for all researchers without their research and publications
this paper would not have been possible. We would also like to extend my appreciation to Dr.
Mahmoud Abaza for his guidance in writing this paper.

Page 9 of 10

Multithreading
Kevin Haghighat December 1* 2008

8. BIBLIOGRAPHY

- Silberschatz, A., Galvin, P. B., & Gagne, G. (2004). “OPERATING SYSTEMS CONCEPTS, (7TH
EDITION READING ED.).” Canada: John Wiley & Sons Canada, Ltd.

- Arora, N.S., Blumofe, R.D., & Plaxton, G.C. (1998). “THREAD SCHEDULING FOR
MULTIPROGRAMMED MULTIPROCESSORS.” In SPAA '98: Proceedings of the tenth annual ACM
symposium on Parallel algorithms and architectures, pages 119-129, New York, NY, USA.
ACM Press.

- Drepper, U., & Molnar, I. (2003). “THE NATIVE POSIX THREAD LIBRARY FOR LINUX.” RedHat.

- Hilderink G.H., J.F. Broenink, & A.W.P. Bakkers. (1998). "A NEwW JAVA THREAD MODEL FOR
CONCURRENT PROGRAMMING OF REAL-TIME SYSTEMS", Real-time magazine, 98-1, pages 30-34

- Solomon D.A., & Russinovich M., (2000). “INsiDE MicROSOFT WINDOWS 2000”, Microsoft
Press, Redmond, WA

= Lee, E. A. (2006). “THE PROBLEM WITH THREADS.” IEEE., Computer, 39(5):33-42.

Thornley, J., Chandy, K. M., and Ishii, H. (1998). “A SYSTEM FOR STRUCTURED HIGH-PERFORMANCE
MULTITHREADED PROGRAMMING IN WINDOWS NT.” In Proceedings of the 2nd Conference on
USENIX Windows NT Symposium - Volume 2 (Seattle, Washington, August 03 - 04, 1998).
USENIX Association, Berkeley, CA, 8-8.

Page 10 of 10

	Overview
	Introduction
	Models
	Libraries
	Challenges
	Conclusion
	Acknowledgement:
	Bibliography

